(2) LEVEL

3 ∞ CQ (AD A 0 7

AD-E409 367

BEHAVIOR CHARACTERISTICS OF TYPE I (75/25) OCTOL DURING MELT POURING HE WARHEAD M250 (CHAPARRAL).

HERMAN J. FRIGAND

AD

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND LARGE CALIBER **WEAPON SYSTEMS LABORATORY** DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

410 327 B

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return it to the originator.

.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER 2. GOVT ACCESSION NO.	
Technical Report ARTSD-TR-79002	
4. TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
BEHAVIOR CHARACTERISTICS OF TYPE 1 (75/25)	
OCTOL DURING MELT POURING HE WARHEAD	Ì
M250 (CHAPARRAL)	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*)	
/· AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(a)
Herman J. Frigand	
-	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ARRADCOM, TSD	
Experimental Fabrication Division (DRDAR-T8F) Dover, NJ 07801	
11. CONTROLLING SPFICE NAME AND ADDRESS	12. REPORT DATE
ARRADCOM, TSD	September 1979
STINFO (DRDAR-TSS)	13. HUMBER OF PAGES
Dover, NJ 07801	28
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	SCHEDULE
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	DDC MR Report) 同位行列位
77. DISTRIBUTION STATEMENT (OF the abstract entered in block 20, if different in	NOV 27 1979
17. DISTRIBUTION STATEMENT (OF the abstract entered in block 20, if different fre	NOV 27 1979
	NOV 27 1979
	NOV 27 1979 B
	NOV 27 1979
8. SUPPLEMENTARY NOTES	B.
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	B.
9. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line condi	B.
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line conditions Analyses	B tions
9. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line conditional HMX Analyses TNT Viscosity	B tions
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line conditions HMX Analyses TNT Viscosity	tions data
19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Octol, type 1 Line condi HMX Analyses TNT Viscosity Processing characteristics Particle s	itions data size distribution
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line conditions HMX Analyses TNT Viscosity	itions data size distribution Ope 1 (75/25) octol during the parameters involved
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Octol, type 1 Line conditions Analyses TNT Viscosity Processing characteristics Particle s 10. ABSTRACT (Continue on reverse side if recovery and identity by block number) A study was made of the characteristics of ty melt pouring for HE Warhead M250 (Chaparral).	itions data size distribution Ope 1 (75/25) octol during the parameters involved

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

STATE CLA	SSIFICATION OF THIS PAG	E(When Data Entered)		
			,	

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

		Page	No.
Intr	oduction		1
Proc	ess		,
Opera	ating Farameters		1
Resul	its and Discussion		2
Concl	usions		2
			3
Kecon	mendations		4
Refer	rences		4
Distr	ibution List	2.	3
Table	s		J
1	Processing conditions	į	5
2	Analytical data - formulation and physical data	13	
3	Analytical data - granulation of HMX (ARRADCOM lab assay)	17	7
4	Viscosity efflux versus warhead rejects	19	j
5	Particle size distribution of HMX versus warhead rejects	22	1

NTIS	White Section
DDC	Buff Section 🔲
UNANNOUNCE	
JUSTINICATIO	
ВУ	
DISTRIBUTION	AVAILABILITY CODES

His worked Hose (Characters)

A study was undertaken relative to the melt-pour of type 1 (75/25) octol, for the Chaparral warhead. It was desired to pinpoint and correct cavitation defects (which occurred periodically) by means of an examination of operations and lot characteristics.

PROCESS

Type 1 (75/25) octol is charged into a melt kettle and the melt temperature is raised to a minimum of 87.8°C (190°F). Upon the melting of the octol, HMX is suspended in molten TNT. Calcium silicate (ref. 3) amounting to 0.4% of the batch weight is next added to the explosion the kettle. The temperature is then increased to 90.6°C (195°F) are vacuum ranging from 635.0 to 660.4 mm (25 to 26 in.) is applied to the vessel for 30 minutes.

Warheads positioned on a rack in a buggy, each fitted with a loading former-funnel and each previously preheated to 81.1°C (178°F), are wheeled under the kettle to receive the product. A short hose equipped with pinch valve and attached to the outlet valve of the vessel reaches every warhead in the rack. With both valves open, an operator guides the flow of the explosive to each warhead by manipulating the pinch valve on the hose.

After loading is completed, the buggy of loaded warheads is transferred to the cooling bay. The rack controls the height and location of each warhead so that the loading funnels are centrally positioned between the heated panels in the bay.

For a minimum of 4 hours, as the warheads cool, heat is main-tained on the panels surrounding the funnels. At the end of the 4-hour period, the heat to the panels is turned off and the warheads are allowed to cool completely.

Upon completion of cooling, the warheads are forwarded to subsequent operations. These involve drilling, cleaning of threads in the warhead, weighing of the loaded warhead, assembly of component parts, x-ray, inspection, painting, marking, and pack-out.

When cavitations occur in the warhead, as determined by the x-ray examination, the warhead is returned for disassembly, deep drilling of the cavity, and repour with the molten explosive.

OPERATING PARAMETERS

In order to maintain strict control of the process and minimize operating variables, the following parameters were used in most instances (also, see table 1).

Kettle size: 0.28 m³ (75 gal.)

Batch size: 190.5 kg (420 lb) (approx.)

Mix cycle time:

Melt cycle: 60 min Vacuum cycle: 30 min

Mix temperature: 87.8 to 93.3°C (190 to 200°F)

Kettle agitator speed:

Mix cycle: 40 ± 5 RPM

Melt-pour cycle: 15 to 20 RPM

Vacuum: 584,2 to 660.4 mm (23 to 26 in.)

Kettle outlet valve temperature (oil heated): 93.3 to 96.1°C

(200 to 205°F)

Heat transfer fluid temperature (for oil heated panels): 121.1°C (250°F) (approx.)

RESULTS AND DISCUSSION

The lots used were procured from the Holston Army Ammunition Plant (AAP) (vendor) Kingsport, Tennessee, and complied in all respects with military specification for chemical and physical properties of octol (ref. 2) (tables 2 and 3). This specification states that type 1 (75/25) octol shall consist of grade B HMX (98% minimum purity) and that 100% of the HMX shall pass through a No. 8 US standard sieve. There are no additional granulation requirements. A blend of grade A and grade B HMX may be used provided that the mathematical weighted average of the blend's purity is 98 percent minimum. The TNT used shall conform to the military specification for type 1 (ref. 3). The TNT in current use is in flake form.

The relationship of warhead rejects to viscosity and to particle size distribution of HMX was examined (tables 4 and 5). Lots with a viscosity efflux value under 11 seconds in most cases gave the fewest rejects. Regarding particle size distribution of HMX, variations existed within the same lot. However, material with coarser sized particles of HMX, on a lot-to-lot basis, generally produced the fewest rejects. Although both ARRADCOM and the vendor used the military specification (ref. 5) method, there is no correlation between the ARRADCOM lab assay values for viscosity efflux data and that of the vendor.

The Naval Weapons Center, China Lake, California, has performed work relative to HMX compositions with binder (ref 4). In the development of these compositions, it became apparent that the physical characteristics of the HMX filler--specifically, particle size distribution--were of extreme importance relative to maximum solids loading and freedom from voids. Of many distributions tried, a tetramodal distribution high in class D (class 4) HMX, with lesser peaks at 200, 30, and about 7 microns, gave the best overall results. Specification requirements (ref. 5) for class D (class 4) HMX granulation are:

US standard sieve number	Class D (class 4) HMX (percent through sieve)
8	100
12	85 (min)
3 5	10 to 40
50	~ ■
100	15 (max)
120	
200	N. m.
32 5	
50 100 120 200	10 to 40

CONCLUSIONS

On the basis of the data presented the use of low viscosity octol, linked with coarser granulation characteristics of HMX, should optimize the melt-pouring phase of operations for Chaparral and should assure end item loading success.

RECOMMENDATIONS

Trial batches of type 1 (75/25) octol should be procured from Holston AAP with the following features:

- 1. Viscosity efflux value of 10.5 seconds maximum, instead of 15 seconds maximum as specified by reference 2.
- 2. Particle size distribution high in class D (class 4) HMX granulation as specified by reference 4 but having coarser granulation characteristics.

Feasibility studies should then be conducted evaluating process and product behavior relevant to the melt pouring of the warhead. The studies should also include economic and capacity impact analyses on the part of Holston AAP to produce low viscosity octor with granulation features as described.

REFERENCES

- 1. Military Specification, Calcium Silicate, Technical, MIL-C-51077, Amendment 2, dated 2 October 1969.
- 2. Military Specification, Octol, MIL-O-45445B, Amendment 1, dated 14 March 1977.
- 3. Military Specification, Trinitrotoluene (TNT), MIL-T-248C, Interim Amendment 1, dated 30 March 1976.
- 4. B. W. Stott and L. E. Koch, "Optimization of Filler Size Distribution for Preparing Castable Plastic Bonded Explosives," NWC Report 5216, China Lake, CA, May 1972.
- 5. Military Specification, HMX, MIL-H-45444B, Amendment 2, dated 12 July 1977.
- 6. Military Specification, Warhead, Guided Missile, HE, M250, Loading, Assembly, and Packing, MIL-W-50848C, Amendment 2, dated 10 July 1978.

The cost of renovating a rejected warhead amount to about \$300.

 $^{^{2}}$ The current type 1 (75/25) in use costs \$4.45 per pound.

Table 1. Processing conditions.

<u>Rejects ^c</u>	וי מי	10	н	א וייר	۰۰۰ (·	,, ,	- 1
Marfeads	18	35	ž	80 80	188	10 88	18	18
Series	7 7	1	H	1 2	-	7 7	7	N
Viscosity effluxa sec	;	;	ł	ţ	;	:	1	1
Vacuum mm (in-)	584.2 (23)	584.2 (23)	i	584.2	(23) 584.2	(23) 584.2	(23) 584.2 (72)	(23) 609.6 (24)
Kettle agitator speed rpm	. 35	44	;	42	4	25	39	35
weight 1b	180 250 430	95	700	120	479	420	420	240 90 ^d 330
Batch weight	81.4 113.4 195.0	43.1 57.6d	199.5	196.5	. 190	150.5	190.5	108.9 40.8d
During melt-sour cycle	90.6 (195)	91.7	ł	88.9 (192)	91.7	91.1	91.7 (197)	
Temperature, °C (°F Heat During transfer mixing fluid cycle	90.6 (195)	93.3 (200)	ì	88.9 (192)	93.3 (200)	93.3 (200)	93.3 (20r	91.1 (196)
Temperati Heat transfer fluid	115.6 (240)	115.6 (240)		1	1	:	;	1
Kettle outlet valve	93.3 (200)	93.3 (200)	1	ł	}	;	1	1
Lot	HOL-204	HOL-264	HOL-199	HOL-199	HOL-3187	HOL-3187	HOL-205e	HOL- 205 [€]
Cate of processing	7/20	7/21	8/7	8/8	6/8	8/14	8/15	3/16

ootnotes at end of table.

Table 1. (Continued)

	ę.	[5]	o rio				
		-E- (øn da	,
	Marheads	18	18 18 18	18 16	19 19	13.8 13.8	18 18
	Seriech	G T	7 1 7	H 7	ни	- 7	H 72
	Viscosity efflux ^a sec		1	ł	88	10	13
:	Vacuem mm (in.)	635.0	(25) (25)	635.0 (25)	609.6 (24)	355.6 (14)	609.6 (24)
Kettle	speed rpm	40	41	40	39	39	39
	e ight 15	420	\$20 d	360 420 420	180 (315) 180 (323) 60 (315) ^d	360 360 500 500 500 500 500 500 500 500 500 5	240 (323) 180 (310) 60 (323) ^d 480
	Batch ,	190.5	190.5 22.7 215.7	163.3 27.2d 190.5	81.7 (315) 81.7 (323) 27.2 (315)	163.3 27.2d	108.9 240 (323) (323) 81.7 180 27.2 60 (323) ^d (323) ^d 217.8 480
F) During	melt-pour cycle	93.3 (200)	93.3 (200)	91.1 (196)	91.7 (197)	90.6 (195)	92.2 (198)
re, °C (°J During	mixing cycle	100 (212)	100 (212)	91.1 (196)	93.3 (200)	94.4 (202)	95.6 (204)
Temperatu Heat	transfer	;	(212)	i i	;	(1	}
Kettle	valve	;	1	:	1	1	}
	int.	HOL-315	HOL-315	HOL-315	HOL 315- HOL 323	HOL-323 ⁸	HOL-323- 310
Date of	processing	8/19	8/21	8/22	8/23	8/28	8/30

See footnotes at end of table.

Table 1. (Continued)

Rejects ^C 18 18	14	14 7 16	8	18
Marheads Toaded 18	18	18 18 18	14	18
Series b	۲,	7 HC'	r-4	7
Viscosity efflux ^a sec	11	11	11	3 0
Vacuum (im) (in.) 685.8 (27)	660.4	(26) (26)	635.0 (25)	711.2 (28)
Kettle agitator spied rpm 39	42	42	40	28
Batch weight kg lb - 27.2 60 (310) (312) (312) (312) (312) (312) (312) (312) (312) (312) (312) (313) 40.8 90 (310) d (510	480 90 570	120 120 240	120 (311) ^d 300 (312) 420
Batch w kq 27.2 (310) 108.9 (312) 27.2 (265) 40.8 (310) ^d 204.1	244.9	217.7 46.8d 258.5	54.4 54.4 108.8	54.4 (311) ^d 136.1 (312) 190.5
During e ⁻ :-pour cycle 91.1	90.6 (195)		91.7	91.1 (196)
e, °C (°I) Durring mixing cycle 93.3 (200)	93.3 (200)	93.3 (200)	93.3 (200)	93.3 (200)
Temperature, °C (°F) Heat During transfer mixing m fluid cycle 93.3 (200)	;	123.3 (254)	123.3 (254)	121.1 (250)
Settle outlet valve	}	93.3 (200)	93.3 (200)	93.3 (200)
	HOL-3111	HOL-311 ¹	HOL-311	312i
Date of <u>Processing</u> 9/5 and 9/6	10/2	10/5	10/11	19/17

See footnotes at end of table.

- Andrews Andrews (Andrews Andrews Andrews

Table 1. (Continued)

	Rejects	13	0 0	00	0 1		en eo
	Warheads ?oaded	18 18	188	18	18	18	18 15
	Series	+4 KV	m ^1		H (1	7 7	7 7
	Viscosity efflux ^a sec	a	7	10	v.	**	17
. : .), !*	Vacuum mm (in.)	660.4 (26)	660.4 (26)	660.4 (26)	685.8 (27)	609.6 (24)	660.4 (26)
Kettle	agitator speed rpm	40	42	6 2	20	43	4
		480 45d 525	60 (312) ^d 420 (320) 480	360 120 ^d 480	360 420 420	420 58 478	(320)d 360 360 420 420
,	Batch weight kg lb	217.7 20.4d 238.1	27.2 (312) ^d 190.5 (320) 217.7		163.3 27.2d 190.5	26.3d 26.3d	27.2 (320) ^d 163. ⁴ (316) 190.5
,- -		91.1 (196)	90.0	90.0	90.0 (194)	90.0	91.1 (196)
re, °C (°F	During mixing cycle	90.0	90.0	90.0 (194)	90.0 (194)	92.2 (198)	90.0
Temperatu	Heat Dutransfer mi	121.1 (250)	121.1 (250)	126.7	126.7 (260)	126.7 (260)	128.9 (264)
	Kettle outlet valve	93.3 (200)	93.3	93.3 (200)	93.3	94.4	93.3 (200)
	Lot	HOL-312	HOL-312- 320	HOL-320	HOL-320	HOL-320	HOL-316
	Date of processing	10/25	11/2	11/9	11/21	11/22	11/27

See frotnotes at end of table.

Table 1. (Continued)

Rejects	۰,0	0 0′	prof prof .	, 0 m	0	00
Warheads	18 18	188	10	28 88 28 88	18	38 9
Seriesb	7	H 73	2 2	H N	7	7 7
effluxa sec	17	22	4	ø	10	ø
vacuum mm (in.)	584.2 (23)	584.2 (23)	584,2	584.2 (23)	1	609.6 (24)
speed rpm	45	20	45	45	+	49
e ight	360 60 420	360 60d	180 (316) 120 (308) 60 (316) ^d 360	240 (308) 120 (313) 60 (308) 420	360 60d 420	240 40d 280
Batch w	163.3 27.2d 190.5	163.3 27.2d 190.5	81.7 (316) 54.4 (338) 27.2 (316) ^d 163.3	108.9 (308) 54.4 (313) 27.2 (308)d 190.5	163.3 27.2d 190.5	108.9 13.1 127.0
Uuring melt-pour cycle	90.0 (194)	92.2 (138)	90.6 (195)	91.1 (196)	;	91.7 (197)
During mixing cycle	91.1	91.1 (196)	91.1	90.0 (194)	1	91.1 (196)
transfer ·luid	126.7	132.2 (270)	125.7 (260)	126.7 (260)	1	128.9 (264)
outlet valve	93.3 (200)	93.3 (200)	93.3	92.2 (198)	;	93.3
Lot	HOL-316	HOL-316	HOL-316- 308	HOL-306- 313	HOL-313	HOL-313
Date of processing	12/6	7/21	12/8	12/13	12/14	12/15
	heat During During During Batch weight speed mm efflux ^a Marheads Lot valve luid cycle cycle kg lb rpm (in.) sec Series ^b loaded i	Marheads Marheads	Marcheal	Moutlet transfer mixing melt-pour Batch weight speed mm effluxd Series Marheads Marheads	Holi-316 Part Heat Dulying Quiring Quiring Outlief Fransfer Part P	HOL-316 93.5 126.7 91.1 90.0 157.2 40.0 175.0

See footnotes at end of table.

Table 1. (Continued)

Rejects ^c	0	0 08		rn	কণ	v 7	
Warheads loaded	18	18 18 18		18 18	18 18	18 18	20
Seriesb	e (7 77	•	7 7	7 7	7 7	د. مو
Viscosity efflux ^a sec	σ	11		13	17	14	12
Vacuum mm (in.)	584.2	635.0 (25)		635.0 (25)	660.4 (26)	660,4 (26)	660.4 (26)
Kettle agitator speed rpm	39	43		40	40	42	40
e ight	420	240 (313) 60 ⁴	180 (309) 480	360 90d 450	420 90d 510	360 90d 450	240 60d 300
Batch weight kg lb	190.5	108.9 (313) 27.2 ^d	$\frac{81.6}{217.7}$	163.3 40.8 204.1	190.5 40.8d 231.3	163.3 40.8 204.1	108.9 27.2d 136.1
During melt-pour cycle	93.3 (200)	91.1 (196)		91.7 (197)	91.1 (196)	93.3 (200)	92.2 (198)
During mixing cycle	93.3 (200)	90.0 (194)		90.0 (194)	90.0 (194)	93.3 (200)	92.2 (198)
Temperature, °C (°F) Heat During D transfer mixing m fluid cycle	130 (266)	128.9 (264)		128.9 (264)	131.1 (268)	<u>122.2</u> (252)	121.1 (250)
Kettle outlet valve	94.4 (202)	94.4 (202)		93.3 (200)	93.3 (200)	93.3 (200)	93.3 (200)
Lot	HOL-313	HOL-313- 309		HOL - 309	HOL-305	HOL-309	HOL - 309
Date of processing 1979	1/23	1/24		1 25	1/26	1/31	2/1

see footnotes at end of table.

able 1. (Continued)

^aThe process control test for viscosity was determined at the point of operation in Bldg 810 The molten explosive was poured into the cone and its flow time (the time for the explosive using a viscosimeter cone preconditioned to a temperature of 60.0 to 76.7°C (140 to 170°F). to move from the tip of the upper marker to the tip of the lower marker) was recorded by

 $^{
m b}$ Normally 18 warheads are loaded with octol at one time, constituting one series.

The presence cases, warheads were rejected because radiographic examination revealed cavitation which exof one of the defects is cause for warhead rejection and its removal from the lot. ^CWarheads are subject to radiographic examination for the defects listed $b \iota low$.

- pellet and the booster cup bottom where such a gap or the total of the gaps is greater than Presence of a gap between the booster pellet and the SGA well bottom or between the booster
- 2. Cracked or delaminated booster pellet.
- $(0.50 \, \mathrm{inch}^2)$. The maximum dimension of a single cavity in the plane of observation shall cavitation, the total projected area of all cavities shall not be greater than $322.6~\mathrm{mm}^2$ not be greater than 9.7 mm (0.38 inch). For porosity, porous areas snall be treated as cavities, except that 80% of the projected length and 80% of the projected area shall be Explosive cast quality under the criteria for cavitation and porosity (ref. 6).

^dScrap (defined as remelt explosive from a previous pour which is incorporated into a virgin

enitially this batch melt-poured with difficulty.

 $^{\mathbf{f}}$ Lack of material flow due to faulty diaphragm valve; this batch was discarded.

THE PROPERTY OF THE PARTY OF TH

Table 1. (Continued)

 $g_{
m 150-gal}.$ kettle used in place of 75-gal. kettle due to a faulty microswitch.

h An electrical failure occurred in the cooling bay, resulting in a temperature malfunction. Also, the oil tank which supplied energy to the heated panels began leaking and was repacked to eliminate leakage.

 $^{\mathrm{i}}\mathrm{Personnel}$ new to the area and operations were assigned to the job.

Table 2. Analytical data - formulation and physical data

Density at 25°C (77°F)	1	1.79	1,81 1,81 1,80	1.79	1.79 1.78 1.78	1.77	1.78 1.79 1.77
Viscosity efflux (sec)	15 (max)	14.8 30.0	No flow No flow 100	14.8 30.0	65.0 110.0 60.0	12.5 20.0	111
Acetone insoluble matter (max)(%)	0.10	passes	1 1	passes	111	passes	111
Insoluble particles on No. 60 (max)	ĸ	passes	1 1	passes	111	passes	111
Moisture (max)(%)	0.25	0.14	0.05 0.04 0.03	0.14	0.03 0.05 0.03	0.18	0.02 0.02 0.02
TNT (%)	25+2	23.3	24.5 25.1 27.0	23.3	25.5 25.9 25.7	25.5 25.3	24.9 25.2 25.1
HMX (%)	75+2	76.7	75.5 74.9 73.0	76.7 74.4	74.5 74.1 74.3	74.5	75.1 74.8 74.9
Source	MIL-0-45445B requirements	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End
Lot	HOL-204			HOL-204		HOL-199	
Date of processing (1978)	7/20			7/21		8/7	

e footnotes at end of table.

Table 2 (Continued)

Density at	1 78	1.77	2, 1, 2	111	1, 78	1.79
Viscosity efflux (sec)	1	1 : :	1 1	80.0 75.0 92.0	11.5	80.0 90.0
Acetone insoluble matter (max)(%)	1 :	111	1.1	111	passes	: 1
Insoluble particles on No. 60 (max)	1 :	111	: :	111	passes	111
Moisture (max)(%)	0.00	0.01 0.01 9.02	0.00	0.02 0.02 0.02	0.12 0.03	0.03 0.03 0.04
TNT (%)	24.4	23.1 24.4 24.6	24.4	111	24.7 24.50	23.68 24.62 23.74
H4X (%)	75.6	76.9 75.6 75.4	75.6	111	75.3 75.50	76.32 75.38 76.26
Source	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Mel: pour process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End
Lot	HOL-3187		HOL-3187		HOL-205	
Date of processing	6/8		8/14		8/15	

ee footnotes at end of table

Table 2 (Continued)

Density at 25°C (77°F)	1.78	1.75	1 1	111	1 1	111
Viscosity efflux (sec)	9.7 19.0	41.0 34.0 63.0	7.6	41.5 45.0 75.0	7.6	33.0 46.5 62.5
Acetone insoluble matter (max)(%)	passes	: : :	passes	111	passes	: : :
Insoluble particles on No. 60 (max)	passes	: : :	passes	1 1 1	passes	111
Moisture (1:2.)(%)	0.0 0.0	0.01 0.01 0.02	0.09	0.02 0.02 0.01	60.00	0.02 0.01 0.02
INI (%)	25.6 24.80	25.80 26.20 23.60	25.6	111	25.6	111
HMX (%)	74.4	74.20 73.80 76.40	74.4	111	74.4	111
Source	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pcur process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Melt-pour process ^a Initial Center End	Incoming lot (virgin) Vendor assay ARRADCOM lab assay	Welt-pour process ^a Initial Center End
Lot	HOL-315		HOL-315		H0L-315	
Date of processing	8/19		8/21		8/22	

See footnotes at end of table.

Table 2 (Continued)

Density at 25°C (77°F)		111	1.79	1.72
Viscosity efflux (sec)	11.0	49.0 35.0 85.0	18.0° 11.0 22.0	25.0 34.0 No flow
Acetone insoluble matter (max)(%)	passes	111	passes	111
Insoluble particles on No. 60 (max)	passes	111	passes	
Moisture (max)(%)	0.10	0.02 0.02 0.02	0.10	0.01 0.01 0.01
1-1	25.3	111	25.3 25.17	26.67 24.90 23.89
HMX (%)	74.7	111	74.7	73.33 75.10 76.11
Source Incoming lot (virgin)	Vendor assay ARRADCOM lab assay Melt-pour processa	Center End Incoming lot (virgin)	Vendor assay ARRADCOM lab assay Melt-pour processa	initial Center End
Lot HOL-315-	ç	HOL-323 ^C		
Date of <u>processing</u> 8/23		8/28		

The initial melt pour sampling procedure represents product used for loading warheads 1-12. The center melt-pour represents product used for loading warheads 13-24. The end melt pour represents instances, 36 warheads are used in the loading procedure.

Four reasons of economy, the ARRADCOM assay was cut off with Lot HOL-323.

The second second

blandskrid likeljandara daga iz gizing Polisiana zakizina ka iz kizina polisiana zakizina ka kizina ka izina ka

Table 3. Analytical data - granulation of HMX (ARRADCOM lab assay).

Lot Dercentage	rejects	\$2	18.8	16.7	2.1
No. of	rejects ^c	en va	м	m	
Marheads	loaded	85 4. 4.	16	138	18 10
	Series	× 2			2 1
	325	22.2 34.8 35.1 27.0	25.1 22.3 23.3 23.6	27.0 27.4 27.7 26.3 27.1	16.3 19.6 22.5 22.2 21.4
f HMX ^a	200	30.5 :5.7 47.3 35.3	34.6 30.9 30.8 32.1	32.8 33.0 33.4 32.3	25.7 25.6 29.4 28.5 27.8
ution o h no.}	130	42.0 50.3 64.2 48.7 57.7	45.8 43.7 44.0 44.8	40.7 41.4 41.3 40.7 41.1	33.8 35.1 39.9 38.6
distrib ugh mes	50 100 120	45.7 64.9 69.3 53.5 62.6	53.2 47.9 48.0 49.7	44.8 45.8 45.4 45.0	39.0 40.6 44.7 42.9
Particle size distribution of HMX ^a (% through mesh no.)	요	62.2 83.3 88.9 73.5	68.2 69.5 71.8	65.4 65.9 65.5 65.7	59.9 61.4 66.4 63.8
Particl	<u>اع</u>	87.5 97.6 99.4 94.4	96.9 91.1 93.7 93.9	92.7 92.3 94.0 92.0	86.1 92.7 87.5 88.8
	21	100 100 100 100	100 100 100 100	100 100 100 100 100	100 100 100 100
Processing	conditions	Virgin Initial Center End Maan ^d	Virgin Initial Center End Mean ^d	Virgin Initial Center End Mean ^d	Virgin Initial Center End Koand
	iot	HOL-204 ^e	HOL- 204 ^e	НОГ-199 [©]	HOL-3187 ^e
Date of	processing (1978)	7/20	7/21	8/7	6/8

footnotes at end of tabl

Table 3 (Continued)

Lot percentage	rejects			0					2.8					0			٠		2.8		,	
flo. of	rejects ^c			0	0			,	0	н	•		-	0	0		**		-	0	•	
Marheads	Toaded			18	18				18	18				13	18				18	¥7		
•	Series		_	-	2				-	2				-	2 (2		
	325	;	19.6	19.9	24.3	21.3	17.5	23.6	30.5	24.0	26.0	23.0	27.4	26.7	23.5	25.9	;	9.92	23,8	23.4	24.6	
f HMX ^a	200	;	27.4	27.2	33.5	29.4	22.9	29.4	37.2	30.1	32.2	29.4	35.2	34.2	31.4	33.6	;	33.5	31.3	30.3	31.7	
ution o h no.)	120	1	39.2	37.8	46.4	41.1	30°C	39.6	45.7	38.7	41.3	39.1	46.8	46.0	43.3	45.4	;	44.4	42.6	41.0	42.7	
distríb uqh mes	50 100 120	1	44.6	43.7	53.1	47.1	¥.0	44.4	50.0	42.2	45.5	43.8	52.0	9. i.s	48.1	90.09	1	49.5	47.7	45.6	47.6	
Particie size distribution of HMX ^a (% through mesh no.)	SI SI	1	99	92.0	79.0	70.2	50.1	8.99	61.1	63.1	63.7	60.7	73.1	74.6	69.3	72.3	;	67.4	67.0	63.5	999	
Particî	33	;	89.9	86.5	95.2	90.5	72.8	94.4	88.1	3.16	91.5	82.6	95.0	96.0	91.2	94.1	;	87.7	89.2	85.2	87.4	
	175	ł	100	100	100	100	100	100	100	100	100	100	100	100	100	100	ŧ	100	100	100	100	
Processing	conditions	Virgin	Initial	Center	End ,	Mean	Virgin	Initial	Center	End	Mean ^d	Virein	Initial	Center	End ,	Mean	Virgin	Initial	Center	End .	Meand	
	iot	HOL-3187 ^e					HOL-265 ^e					HOL-315e					HOL-315e					
Date of	processing	8/14					8/15					8/19					8/21					

e footnotes at end of table.

Table 3 (Continued)

Lot percentage	rejects			11.8					5.6					22.2	÷	
	υ.		-		~-	~		٠,		~	_		_		_	
¥o, of	rejects			7	7				7	9				00	0	
Karheads	Joaqed			18	16				18	18	,			. 81	18	
•	Series		_	- -) 2			_	1	2				-	2	
	332	ł	24.3	24.7	20.6	23.2	;	19.7	25.7	16.0	20.5	21.4	23.1	13.7	20.1	19.0
of HMXª	200	{	31.0	31.8	26.6	29.8	!	31.9	33.2	27.5	30.9	27.2	8.62	19.4	25.8	25.0
Particle size distribution of HMX ² (% through mesh no.)	120	1	41.9	43.3	36.5	40.6	ļ	41.8	43.2	6,9	9.04	35.4	37.2	28.5	34.7	33.5
distril ough me	50 100 120	!	47.1	48.0	41,3	45,5	;	46.5	47.6	41.4	45.2	38.6	40.1	32.2	38.8	37.0
le size (% thr	S)	1	65.7	66.7	89,9	64.1	1	63.6	64.2	58.2	62.0	53.2	55.2	.51.9	27.0	54.7
Partic	8	1	88.8	88.4	83.8	87.0	1	85.9	8.68	87.8	86.2	81.0	83.9	86.3	93.3	88.0
	21	ŧ	100	100	100	100	1	200	100	100	100	100	100	100	100	100
Processing	conditions	Virgin	Litial	Center	End ,	Mean ^d	Virgin	Initial	Center	End .	Meand	Virgín	Initial	Center	End	Mean ^d
	Lot	HOL-315					HOL-315-	323				HOL-323e				
Date of	processing	8/22					8/23					8/28				

^aparticle size distribution of HMX is determined by extracting the TMT from octol with suitable solvent. The remaining HMX is placed in an oven and dried at 100°C (212°F) for one hour. The material is then subjected to wet sieve procedure in accordance with the listed method in reference 5.

bsee footnote b in table 1.

See footnote c in table 1.

dwean percentage values of initial, center, and end melt-pour.

eSee footnote a in table 2.

Table 4. Viscosity efflux versus warhead rejects.

Warhead rejects (%)		25	18.8	16.7	2.8	0	2.8	11.8	5.6	0	2.6	0
Viscosity efflux, vendor assay (sec)		14.8	14.8	12.5	11.5	7.6	7.6	7.6	11.0 10.4 avg	8.5 9.8 avg	$8.0 \\ 9.4$ 8.7 avg	9.4
Lot*		HOL-204	HOL-294	HOL-199	HOL-205	HOL-315	HOL-315	HOL-315	HOL-315- 323	HOL-323- 310	HOL-312- 320	HCL-320
Date of processing	1978	7/20	7/21	8/7	8/15	8/19	8/21	8/22	8/23	8/30	11/2	11/9

*Lots in process where mechanical malfunction and/or unusual operating conditions occurred are not included.

Table 4. (Continued)

Warhead rejects (%)	5.6	2.8	0 7.1 2.8	0	5.6
Viscosity efflux, Ven assay (sec) 9.4	9.4	14.5	14.5 10.6 10.3 ave	10.0	10.0 10.0 13.4) 11.7 avg 13.4
Lot* HOL-320	HOL-320 HOL-316	HOL-316 HOL-316	HOL-316 HOL-308 313	HOL-313 HOL-313	HOL-313 HOL-313- 309 HOL-309
Date of processing 11/21	11/27	12/6	12/8 12/13	12/14 12/15 <u>1979</u>	1/23 1/24 1/25

*Lots in process where mechanical malfunction and/or unusual operating conditions cocurred

Table 4. (Continued)

Warhead rejects (%)	25.0	0.62	25.0	
Viscosity efflux, vendor assay (sec)	13.4	13.4	13.4	
Lot*	HOL-309	HOL-309	HOL-309	
Date of processing	1/26	1/31	2/1	•

Lots in process where mechanical malfunction and/or unusual operating conditions occurred are not included.

Particle size distribution of HMX versus warhead rejects. Table 5.

	Warhead rejects (%)		25.0	18.8	16.7	7.1	0	2.8	0	2.8	11.8	5.6
entage Ir	325		32.3	23.6	27.1	21.4	21.3	26.0	25.9	24.6	23.2	20.5
an perce melt-pou	200		42.8	32.1	32.9	27.8	29.4	32.2	33.6	31.7	29.8	30.9
Particle size distribution of HMX - mean percentage values of initial, center, and end melt-pour	120		57.7	44.8	41.1	37.9	41.1	41.3	45.4	42.7	40.6	40.6
tion of center,	% through mesh no.		62.6	. 49.7	42.4	42.7	47.1	45.5	9.09	47.6	45.5	45.2
ticle size distribution of values of initial, center,	(% throu		81.9	71.8	65.7	63.9	70.2	63.7	72.3	0.99	64.1	62.0
le size (ues of i	88		97.1	93.9	92.8	88.8	90.5	91.5	94.1	87.4	87.0	86.2
Partic val	21		100	100	100	100	100	100	100	100	100	100
	Lota		HOL-204	HOL-204	HOL-199	HOL-3187	HOL-3187	HOL-205	HOL-315	HOL-315	HOL-315	HOL-315- 323 ^b
	Date of processing	(1978)	7/20	7/21	8/7	6/8	8/14	8/15	8/19	8/21	8/22	8/23

 $^{\rm a}{\rm Lots}$ in process where mechanical difficulties and/or unusual operating conditions occurred are not included. $^{\rm b}{\rm For}$ economical reasons, the lab assay was cut off with lot HOL-323.

DISTRIBUTION LIST

Commander

U.S. Army Armament Research and Development Command

ATTN: DRDAR-LC

DRDAR-LCM, Mr. L. Saffian DRDAR-LCU-E-E, Mr. D. Seeger DRDAR-TS, Col D. E. Wright DRDAR-TS, Mr. R. A. Vecchio DRDAR-TSF, Mr. E. J. Hann DRDAR-TSF-E, Mr. S. Zarra

DRDAR-TSF-EP, Mr. R. C. Bjelke (20)

DRDAR-TSS (5)

Dover, NJ 07801

Commander

Radford Army Ammunition Plant

ATTN: Dr. W. T. Bolleter, Hercules Inc. Radford, VA 24141

Commander

Ravenna Army Ammunition Plant Ravenna, OH 44266

Commander

Sunflower Army Ammunition Plant Lawrence, KS 66044

Commander

Badger Army Ammunition Plant Baraboo, WI 53913

Commander

Indiana Army Ammunition Plant Charlestown, IN 47111

Commander

Holston Army Ammunition Plant Kingsport, TN 37660

Commander

Lone Star Army Ammunition Plant Texarkana, TX 75501 Commander
Milan Army Amunition Plant
Milan, TN 38358

Commander
Iowa Army Ammunition Plant
ATTN: Silas Mason, Mason & Hanger, Inc.
Middletown, IA 52638

Commander Joliet Army Ammunition Plant Joliet, IL 60436

Commander Longhorn Army Ammunition Plant Marshall, TX 75670

Defense Documentation Center (12) Cameron Station Alexandria, VA 22314

Commander Louisiana Army Ammunition Plant Shreveport, LA 71130

Commander Newport Army Ammunition Plant Newport, IN 47966

Commander Volunteer Army Ammunition Plant Chattanooga, TN 37401

Commander Kansas Army Ammunition Plant Parsons, KS 67357

Commander Naval Ordnance Station Indian Head, MD 20640

Commander
Lake City Army Ammunition Plant
E. Independence, MO 64050

Commander
River Bank Army Ammunition Plant
River Bank, CA 95367

Commander

St. Louis Army Ammunition Plant St. Louis, MO 63120

Commander

U.S. Army Armament Materiel Readiness Command

ATTN: DRSAR-LEP-L Rock Island, IL 61299

Technical Library ATTN: DRDAR-TSB-S

Aberdeen Proving Ground, MD 21005

U.S. Army Materiel Systems Analysis Activity

ATTN: DRXSY-MP

Aberdeen Proving Ground, MD 21005

Weapon System Concept Team/CSL

ATTN: DRDAR-ACW

Aberdeen Proving Ground, MD 21010

Technical Library ATTN: DRDAR-CLJ-L

Aberdeen Proving Ground, MD 21010

Benet Weapons Laboratory

Technical Library ATTN: DRDAR-LCB-TL Watervliet, NY 12189

Director

U.S. Army TRADOC Systems Analysis Activity

ATTN: ATAA-SL (Technical Library)
White Sands Missile Range, NM 88002

SUPPLEMENTARY

INFORMATION

AD 4017283

ERRATA

Technical Report ARTSD-TR-79002

BEHAVIOR CHARACTERISTICS OF TYPE 1 (75/25)
OCTO: DURING MELT POURING HE WARHEAD
M250 (CHAPARRAL)

Herman J. Frigand

September 1979

The data called out in the ARRADCOM organizational block incorrectly identified the performing element. Attach new cover to the report that correctly reflects Technical Support Directorate as the performing element.

November 1979

AD

AD-E400 367

TECHNICAL REPORT ARTSD-TR-79002

BEHAVIOR CHARACTERISTICS OF TYPE I (75/25) OCTOL DURING MELT POURING HE WARHEAD M250 (CHAPARRAL)

HERMAN J. FRIGAND

SEPTEMBER 1979

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
TECHNICAL SUPPORT DIRECTORATE
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.